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On the thrust due to an air jet flowing from a wing 
placed in a wind tunnel 

By L. C. WOODS 
University of Sydney, Australia 

(Received 20 December 1955) 

SUMMARY 
Consider a wing-jet combination placed in a wind tunnel; the 

measured thrust on the wing due t o  a high speed jet emerging from 
it will require to be corrected to give the infinite stream value. 
This paper provides a theory of these wind tunnel corrections, and 
incidently establishes that the ideal thrust is almost independent 
of the jet exit angle. 

1. INTRODUCTION 
The figure shows a section through a model of a wing and jet engine 

combination, the outer and inner surfaces of which are S,  and S, respectively. 
This model is in a cylindrical wind tunnel, So, of arbitrary cross sectional 
shape. Air is drawn into the wing at BB', the surface S,  separating the 
external stream from that drawn into the engine. It is assumed that energy 
and mass is added to this stream at some section EE' within the wing, con- 
verting it into a high speed jet which emerges at some angle to the main 
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Wing-jet combination in wind tunnel. 

stream at the trailing edge DD'. In our idealized mathematical model of 
the flow this jet is separated from a dead-air region (shown shaded in the 
figure) by a vortex sheet S,, and a further vortex sheet S, separates the dead- 
air region from the external flow. The velocity in the dead-air region, 
which is introduced to represent the blockage effect of the wing drag, is 
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assumed to be zero. Thus the cross sectional area of this region is equal to 
the displacement area produced by the action of viscosity over the wing 
surface and internal ducts". 

Let the plane L-, LI cut the tunnel at right angles upstream at infinity, 
and let the curves of intersection of this plane with the surfaces So and S,  
enclose areas A and a respectively. Similarly, let the surfaces S, and S, 
have cross sectional areas (b + h,) and h, downstream at infinity, so that b is 
the displacement area mentioned above. 

So far we have assumed in our idealization of the flow that (1) there is no 
mixing of the jet and main stream fluids, and that (2) the vorticity is con- 
fined to vortex sheets. With these assumptions it is natural to assume 
further that (3) the flow is isentropic in both the jet and the main stream. 
Thus our model is only a crude first approximation to the real flow, but it 
does yield what might be termed the " ideal thrust ", and a comparison of 
this with the actual thrust achieved will give a valuable estimate of the loss 
of jet efficiency due to viscous and turbulent action. 

Values of the velocity U, pressurep, and densityp at infinity, (a) upstream, 
(b) downstream in the external flow, and (c )  downstream in the jet, are dis- 
tinguished by the subscripts ..a, and , respectively; the subscript , is 
used to denote values in the jet at the trailing edge. The boundary con- 
ditions are (1) no flow across tunnel and wing surfaces, (2) continuity of 
pressure across the dead-air region and the vortex sheets S, and S,, (3) 
continuity of pressure and velocity across. the surface S,, and (4) known 
sources of mass and energy within the wing. By (2) the pressure down 
stream at infinity is p, right across the tunnel, i.e. p ,  =pa. 

2. EXACT MATHEMATICAL THEORY 

Let n be a unit vector along the outward normal to the (external) region 
Zo bounded by the surfaces So, S,, S,, S, and the planes L-, LL,, M ,  MA, 
and n' a similar outward vector for the (internal) region C, bounded by S,, 
S,, S, and the planes L-,L!.,, Mm M&. Let i be a unit vector directed 
downstream along the tunnel axis. The upstream thrust T acting on the 
wing may then be written 

T=-f  pn.i d S  - 1 pn'.i dS +pmb. (1) 
S>+SI S.I+SB 

*Alternatively (see Allen 8z Vincenti 1944) this cross sectional area can be chosen 
so that it gives the same pressure drop downstream at infinity as that caused by the 
drag in the actual non-isentropic flow downstream of the model. The displacement 
thickness method, which is equivalent to assuming isentropic flow, is preferable in 
the author's opinion, since the non-isentropic flow of the wake will not fill the tunnel 
for a considerable distance downstream of the model (many tunnel widths), whereas 
the lower pressure drop of the isentropic flow will be almost completely achieved 
within a downstream distance of less than one tunnel width. The pressure gradient 
and increased velocity at the model due to the wake blockage will be produced pre- 
dominantly by this latter pressure drop. 
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The right-hand side of this equation contains no drag force, the dead-air 
region representing only the displacement effect of the drag. To  represent 
the drag force fully we must also remove momentum from the stream. 

If q is the velocity vector and S is a surface in the fluid with a normal n, 
the momentum equation can be written 

) p n  d S  = - J  (n.q)pq dS.  
S S 

We apply this equation to the regions X, and S,, and take the component in 
the i-direction to obtain 

pn.i d S  - (A  -alp-, +(A -b-h,)pm J Sl+S2+S4 

On adding these equations and using (l), we find that 

T=ho(Po u:-pm V%)-A(p-m + p- m u! m - P m  -pmui) - b P m  u%* (2) 

In this equation the upstream values and the areas A and b (see later) are 
known quantities, and the six quantities p,, p m ,  U,, p,, U,, h, have to be 
calculated. The six equations necessary for this are 

(A-a)p_,U_,=(A-b-h,)p,U,, (3) 

up--mU-m+Q'=hopoUo, (4) 

in which Q' is the known strength of the source within the wing and the 
numbers y and y' are the ratios of the specific heats iri the main stream and 
jet respectively. Equations (7) and (8) are adiabatic equations of state, 
while the first and second pairs follow from the conservation of mass and 
energy, respectively, for each of the regions X, and XI. 

Equations (2) to (8) contain the exact solution of our problem, but for 
practical purposes the following approximate theory is sufficient. 
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3. APPROXIMATE THEORY 

For wind tunnels of cross sectional dimensions large relative to the 
model dimensions, we can set 

u, = U L ( l +  S), (9) 
where 6 is a small first order term, and disregard terms of the second order 
in 6. Of course, in the limit as the tunnel cross section tends to infinity, 
6 + 0, and the approximate theory will yield exact results for an infinite 
stream. From (5), (7) and (9) it is not difficult to calculate the expansions 

=P-,p - M ~ S  + +MW [ (2  - y ) ~ 2 -  11 + o ( ~ 3 )  1, (10) 

p ,  = p - , - P - m u - ~ , ~ ( i  ++ps)+o(s3) ,  (11) 
and 

where M is the Mach number upstream at infinity, and p= (1 - M2)1’2. 
With these approximations, equation (3) ‘gives B2S = (b + h, - a) /A ,  to the 
first order in small quantities, and 

M2 
A p = ( b + h * - a )  (b+lru-a)[(2- . / )M2-3]]} ,  (12) 

to the second order. Equations (10) to (12) enable us to replace (2) by 

where c is the planform area of. the wing. 

following coefficients : 
The areas a, b, c and h, can be eliminated from (13) by introducing the 

the thrust coefficient 
T 

cT = m ’ 
the momentum coefficient of the jet at infinity, 

and a similar coefficient C,, referring to conditions at the jet exit ; 
the mass coefficient of the air intake, 

the mass coefficient of the source within the wing, 
Q’ . 

cb = cp-,u-, ’ 
and the drag coefficient, 

where D is the drag, which is equal to bp-mU_2m, the rate at which 
momentum is destroyed. 
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The momentum coefficients CJo and C,, can be related by using the 
equations (6) ,  (S), and hopo Uo=h,pIUl,  the last of which expresses the fact 
that mass is conserved in the jet. Thus we find that CJo = CJl( Uo/U,) ; and 
if the pressure change along the jet is assumed to be small, 

i.e. 

from the definition of C,, and the fact thatp,=p,. However, for simplicity 
we will express our results in terms of CJo. The drag coefficient with the 
jet operating may differ appreciably from that for the wing alone. The jet 
will induce high speeds in the external flow near the trailing edge and will 
probably prevent any flow separation, but, on the other hand an additional 
boundary layer will emerge from the jet duct. It will not be easy to deter- 
mine experimentally the appropriate value of C, for (18)) but as a first 
approximation the value of C ,  for the wing alone could be taken. 

From equations (4), (15), (16) and (17)) it is found that 

where c ~ = p ~ / p - ~  should be near enough to unity in practice. 
(13) to (20) now give the basic result of this paper, namely 

h, = 2c(CQ + CQ)'/~~JO, (20) 
Equations 

I n  the limit A 00, which corresponds to the case of an infinite stream, 
CT = CJ, - 2cQ. (22) 

Equations (21) and (22) apparently show that C, is independent of the 
jet exit angle and the geometry of the wing but this conclusion is not really 
true. The momentum coefficient that must be adopted for practical 
purposes is the trailing edge value CJl, and if this value is maintained 
constant, equation (19) shows that C,, will depend on the pressure p, at the 
trailing edge. In turn, p, will depend on the wing shape, and especially 
on the jet exit angle, T ,  say. The determination of the precise dependence 
of p, on T would demand a much more detailed and accurate model of the 
flow than the one we have taken. However, it seems clear from (19) that 
C, will not vary so rapidly with T as the function (1 - cos .r)-the law of 
dependence our engineering intuition at first suggests. The independence 
of C, and 7 does follow if C, is assumed to be constant along the jet. This 
was first noted by Davidson (1955) for the two-dimensional case. The 
practical importance of (22) is that, by deflecting jets downwards, lift might 
be obtained without much corresponding loss in forward thrust, but of 
course the effects of turbulence and viscosity have yet to be considered. 
Further, the induced drag could well exceed that produced when lift is 
obtained in the conventional way by wing incidence. High lift at low 
speeds rather than ' inexpensive ' lift would seem to be the real advantage 
of jet deflection as a lifting device. 
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Three special cases of (22) are of some interest. (1) When thejet is derived 
from a source within the wing alone (as in rockets), a = 0 in (13), and (22) 
reduces to 

(2) When there is no jet, but air intakes are operating (as in suction on wings 
for boundary layer control), (22) gives 

so that there is a ‘ sink-drag ’ 2CQ on the wing. 
result. 
as the main stream. 
C,, = 2Cb, and so there is a ‘ source-thrust ’ given by 

CT = CJO. 

c,= -2c,, 
This is a well-known 

(3) A special case of (1) occurs when the jet has the same total head 
From (15) and (17), we find that, in this case, 

4. WIND TUNNEL CORRECTIONS 

Except for the wake blockage term, the theory of wind tunnel inter- 
ference on the thrust is almost the same as the theory of the interference on 
the drag of wings. (For a summary of this latter theory, see Howarth 1953, 
p. 522.) 

Let Ulf,, pZm be the free stream values corresponding to llm, p-,, 
such that the velocity at a given point on the wing is the same in the free 
stream as in the tunnel stream. Let es, e W  be the solid and wake blockage 
factors respectively, that is 

u:,= u-m(l + € s + € w ) .  

The factor cS depends on the tunnel cross section and model volume, and 
its values for two- and three-dimensional tunnels have been published 
(Howarth 1953). On the other hand, E ,  is independent of the tunnel and 
model shape, being equal to one half of the value of 6 defined in equation (9). 
(A semi-infinite disturbance like the wake of a wing always produces half 
of its final downstream effect of the wing itself.) Thus, from (12), 

b + h , - a  

Subtracting (21) from (22) we have 

where the stars denote free stream values, and k is the last term in (21). 
Thus, for fixed values of jet momentum and intake mass, 

which, by an equation for pf, corresponding to (lo), and by (23), we can 
write as 
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By (16), (18) and (20), it now follows that 

which shows how the wind tunnel value C, may be reduced to the free 
stream value C,*. 
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